If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5y^2-13y+8=0
a = 5; b = -13; c = +8;
Δ = b2-4ac
Δ = -132-4·5·8
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9}=3$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-13)-3}{2*5}=\frac{10}{10} =1 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-13)+3}{2*5}=\frac{16}{10} =1+3/5 $
| 6x^2=4x-6 | | n/5+10=13 | | 160=20-v | | 28=4(k-3) | | 4×+2y=6 | | 24+0.44x=19+1.69. | | |6x-8|=|5x+7| | | 7(9x-14)=-287 | | |6x-9|=|7x+2| | | x/5+2=2.5 | | 8(-12-11v)+11(1+5v)=-85 | | 5/25÷4=x | | 8x+26=10(X+5) | | 15*x=184 | | 3x+2x+12=3x+30 | | 6x(2/3x+13/6)= | | 34b+14b=-48 | | -3+6x+3x=87 | | c(30)=20.75-0.06(30) | | 4^1.5x=2*16^x-1 | | 7b−2/5=6b−7/5 | | 40(x-25)=-4120 | | 10(x+4)-4(x-2)=3(x-1)-2(3-x) | | 5t+6=11 | | 3(x-8)-6=-6(-3x+7)-6x | | 5x+5-2x=14 | | 6=6m-4m | | 7x+17=4(x+2) | | 2x+1+6x=-15 | | 3(u-5)=3u+3 | | 4(3x+2)=4(2x+3)+4x= | | 15x-3=10x+60 |